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Abstract: In order to fully make use of limited water resources, humans have built many water
conservancy projects. The projects produce many economic benefits, but they also change the natural
environment. For example, the phenomenon of water temperature stratification often occurs in
deep reservoirs. Thus, effective ways are needed to predict the water temperature stratification
in a reservoir to control its discharge water temperature. Empirical formula methods have low
computational accuracy if few factors are considered. Mathematical model methods rely on large
amounts of accurate hydrological data and cost long calculation times. The purpose of the research
was to simulate water temperature stratification in a reservoir by constructing an intelligent simulation
model (ISM-RWTS) with five inputs and one output, determined on the basis of artificial neural
networks (ANN). A 3D numerical model (3DNM) was also constructed to provide training samples
for the ISM-RWTS and be used to test its simulation effect. The ISM-RWTS was applied to the
Tankeng Reservoir, located in the Zhejiang province of China, and performed well, with an average
error of 0.72 ◦C. Additionally, the Intelligent Computation Model of Reservoir Water Temperature
Stratification (ICM-RWTS) was also discussed in this paper. The results indicated that the intelligent
method was a powerful tool to estimate the water temperature stratification in a deep reservoir.
Finally, it was concluded that the advantages of the intelligent method lay in its simplicity of use,
its lower demand for hydrological data, its well generalized performance, and its flexibility for
considering different input and output parameters.

Keywords: water temperature stratification; artificial neural networks; reservoir; intelligent simulation;
Tankeng hydropower station

1. Introduction

Large-scale water conservancy projects, while generating huge benefits for flood
control, irrigation, and power generation, can cause serious environmental and ecological
problems [1]. Of these, thermal stratification is an important issue. Large-scale Reservoirs
and dams can alter the natural thermal regimes in rivers [2,3], as well as contribute water
pollution and dissolved oxygen concentrations into rivers and lakes, which are directly
related to their water temperatures [4,5]. During large-scale water conservancy project
planning and designing, water environment changes from thermal stratification, one of
the most important factors, must be considered [6]. Water temperature stratification in
reservoirs can result in some significant impacts on the water environment and aquatic
ecosystem in a reservoir region and downstream river [7], which hamper the normal lives of
local residents [8]. For example, they may lower the temperature of the downstream water
resources used for agricultural irrigation [9]. Furthermore, aquatic organisms are sensitive
to water temperature changes. Suitable water temperature is important for some fish
species in downstream rivers, but the changed water temperature may affect their survival,
growth and demographic characteristics [10]. The damage caused by discharged water
with low temperatures from deep reservoirs is often called the ‘cold water disaster’ [11].
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So far, the computational methods of reservoir water temperature stratification can be
divided into two kinds: the empirical formula method and the numerical method [12]. The
empirical formula method can only provide 1D profile distributions, and has low compu-
tational accuracy for the few factors are considered. The numerical methods include 1D,
2D and 3D models. WRE [13], MIT, and ‘Lake Temperature 1′ [14,15] are representative 1D
water temperature models. In 1975, Edinger et al. [16] developed the LARM as the earliest
2D water temperature model. Then CE-QUAL-W2 was developed based on the LARM,
which is a general 2D water temperature model [17]. During the end of the 20th century,
commercial software based on three dimensional CFD bloomed rapidly, such as MIKE3,
FLUENT, and DEFT3D. Compared to 1D models with rough results for predicting water
temperature stratification, 2D or 3D numerical models are used more at present [12,18],
although they are limited by hydrology data, topography data, and computation resources.
In addition, researchers have introduced other methods to this field. Sahoo et al. [19] fore-
casted stream water temperature using regression analysis, artificial neural networks, and
chaotic non-linear dynamic models. Diao et al. [20] predicted reservoir water temperature
through the Lattice Boltzmann method (LBM). Buccola et al. [3] used streamflow response
to precipitation (PRMS) to simulate river temperatures. Jackson et al. [21] investigated
river temperatures using a spatio-temporal statistic model.

Since the 1980s, a mass of intelligent computing methods have been widely applied
to simulation, prediction, optimization, and other scientific fields, such as artificial neural
networks (ANN), genetic algorithms (GA), and fuzzy logic [22]. Therein, ANN have the
abilities of information processing, self-learning, and reasoning, and show the character-
istics of fault-tolerance, non-linearity, non-locality, non-convexity, and more [23]. These
incomparable advantages over traditional methods make ANN very suitable for water
science problems which are hard to establish effectively through formal models. In this
study, the Intelligent Simulation Model of Reservoir Water Temperature Stratification (ISM-
RWTS) was originally proposed on the basis of its ANN, and was verified by the case of
the Tankeng Reservoir, locating in the Zhejiang province of China.

The paper was organized as follows: In Section 2, the study area was determined
and the 3D numerical model (3DNM) of the Tankeng reservoir was established, which
offered samples for the ISM-RWTS and was compared with the ISM-RWTS. In Section 3,
the process of constructing the ISM-RWTS based on ANN was presented. In Section 4, the
evaluation indicators of various given models were listed. In Section 5, the ISM-RWTS was
applied to the Tankeng Reservoir and its performance was evaluated by comparing the
results with the 3DNM and the measured results. Moreover, the Intelligent Computation
Model of Reservoir Water Temperature Stratification (ICM-RWTS) was also proposed for
isothermal prediction. Finally, a set of conclusions (Section 6) closed the paper.

2. Materials
2.1. Investigation Area

The Tankeng Reservoir (E120◦02′, N28◦06′), also known as Qianxia Lake, is located in
the middle reach of the Xiaoxi Tributary of the Oujiang River in Qingtian County, Zhejiang
Province, China. The watershed area above the dam is about 3330 km2, accounting for
93% of the total area. The length of the investigated river segment is about 87 km, and
its average slope is 2.53‰. The watershed is long and narrow with a length of 105 km
and an average width of 31.7 km. The Tankeng Reservoir’s average volume of runoff is
3.75 billion m3, its total storage capacity is 4.19 billion m3, and its normal water level is
160 m. The geographic location and water surface of the Tankeng Reservoir are shown
in Figure 1. In terms of the effect of reservoir backwater, the hydrological condition was
required to be close to that of the natural river while selecting the inlet of modeling domain.
According to Lu’s calculation results [24] of the one-dimensional water surface curve of
the Tankeng Reservoir, the modeling domain was finally determined as shown in Figure 1.
The section 52 km away from the dam and the dam were selected as the inlet and outlet,
respectively, of the investigation area, which were used in simulating the 3DNM.
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Figure 1. The geographic location of the Tankeng Reservoir. Pict 1, Pict 2 and Pict 3 show the location
of the Tankeng Reservoir. The blue represents the water surface at the elevation of 160 m. The yellow
star is the basin outlet within the dam. The green dot is the basin inlet 52 km away from the dam.
The red triangle indicates the location of the measurement station, 1 km away from the dam.

2.2. 3D Numerical Model

The 3DNM of the Tankeng Reservoir was built using the CFD tool MIKE 3, which
was developed by the Danish Hydraulic Institute (DHI). It is based on 3D incompressible
Reynolds-averaged Navier–Stokes equations and assumptions of the Boussinesq and hy-
drostatic pressure [25]. In the 3DNM, developers also considered the influence of turbulent
flow on the numerical solution and the variation of water density in the computational
domain. The water density is closely related to the transport equations of salt and tempera-
ture. The model adopted the Smagorinsky turbulent diffusion module in the horizontal
direction, and the k-ε turbulent diffusion module in the vertical direction.

The establishment of the 3DNM required a large number of grids to truly reflect
the actual situation of the calculation area, but too many grids can greatly increase the
calculating time. When we simulated the 3DNM for the first time, it cost about 700 h to
finish this calculation in a four-core, 3.4 GHz computer. Due to the limitation in computer
resources and massive simulating time, the research area needed to be smoothed on the
edges. The smoothing greatly saved the simulation time and had nearly no influence on
the calculation accuracy. After that, each simulation time was controlled within 300 h. The
effects before and after smoothing are shown in Figure 2a,b, respectively.

In the horizontal direction, the triangular unstructured grids were adopted. In the
vertical direction, there are two kinds of meshing methods [26]: Sigma and Sigma-z. The
Sigma method can accurately give the depth of the simulated area and provides consis-
tent resolution at the riverbed, but over rapidly changing terrain, the Sigma coordinates
create unreal flow which can have a negative effect on the horizontal pressure gradient
calculations, convection, and mixing item. To accurately simulate the vertical flow, the
Sigma-z method was finally adopted. As is shown in Figure 3, the model had 2423 grid
nodes and 3630 grid cells. Two layers with the same thickness of 10 m were set as the Sigma
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grid for the depth of 20 m, while the other layers below 20 m were set as the z grid with
10 m interval.
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Figure 3. Discretization of 3DNM.

The time step was set to 30 s. The calculation period ranged from January 15 to
December 31 in 2016. The air temperature was set according to the local air temperature
series in 2016. The solar radiation was set to the local radiation data. Relative humidity
was set to the local annual average humidity of 76%. The wind speed was set to the local
average speed of 1.3 m/s in 2016. Due to the limited hydrological data, we assumed that the
effects of rainfall and evaporation offset each other. Initially, the initial water temperature
was stationary with a uniform temperature of 12 ◦C, which referred to the measured water
temperature of the reservoir on January 15. When the simulation started, the water flowed
into the reservoir at a rate of 119 m3/s, which referred to the average flow rate in 2016, and
was set as the temperature stratified inflow according to the measured data. The outlet
drained at the same flow rate to maintain a constant water surface level. Based on the
measured water temperature at 1 km away from the dam in the Tankeng Reservoir, the
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model was calibrated to determine the roughness height of the riverbed as 0.05 m, the
horizontal diffusion coefficient, Dh, as 1 m2/s, and the vertical diffusion coefficient, Dv, as
0.05 m2/s.

3. Methodology
3.1. Topological Structure of ISM-RWTS

To construct the topological structure of the ISM-RWTS, it is important to limit the
selection of parameters to those that reflect the most relevant characteristics affecting water
temperature stratification. These temperature gradients result from diverse factors, such
as local climate, topography of the reservoir, inflow, and outflow [20]. Figure 4 shows the
main processes of heat exchange in reservoirs. The wind speed affects the surface heat
exchange. The higher the wind speed, the higher the surface heat dissipation efficiency [27].
Air temperature and humidity influence the conduction heat loss and evaporation heat loss
at the surface. Solar shortwave radiation and atmospheric longwave radiation penetrate
deep into the reservoir, and a small proportion of energy is also reflected back into the
atmosphere. At the bottom of the reservoir, the water and river bed also exchange heat at
all times [28]. Inside the reservoir, the mixing of hot and cold water takes place on account
of the disturbance of wind or the decrease in surface temperature. Moreover, inflow can
bring huge amounts of heat or negative heat, while outflow can take away lots of heat or
negative heat [29].
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Figure 4. The heat exchange in a reservoir.

If there is no significant change in the operation rules of the reservoir, the variation
rule of the water temperature stratification in the reservoir will remain stable during the
period. In a year, the water temperature stratification during different seasons is greatly
affected by the climate. Because tremendous changes in water temperature stratification
in the reservoir often occur from May to September, to reflect the influence of climatic
effects, including wind, solar radiation, and humidity, a total of five intelligent models
were built for May, June, July, August and September in this study. The topography of the
reservoir was described by some characteristic parameters, such as maximum depth and
reservoir area. The outflow rate was considered equal to the inflow rate in order to reduce
the number of inputs. With these factors in mind, a total of five parameters were finally
selected as the ISM-RWTS’s inputs, i.e., reservoir depth (DR), reservoir area (AR), reservoir
capacity (CR), water inflow (WI), and water depth (WD). Water temperature (WT) was
selected as the ISM-RWTS’s output. Here, WD was defined as the depth from the water
surface. In consideration of the ANN based on Error Back Propagation Algorithms (BPNN),
which are mature and widely applied [30], we adopted it as the ISM-RWTS’s intelligent
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algorithm to identify the non-linear mapping relationship between the input and output.
The ISM-RWTS’s topological structure is shown in Figure 5 and written as:

WT = BPNN(DR, AR, CR, WI, WD) (1)
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There are five input neurons and one output neuron. The number of hidden neurons
depended on the training effects. Wij represents the link weight between ith input neuron
and jth hidden neuron. Vj1 represents the link weight between jth hidden neuron and the
output neuron.

3.2. Design of Training Samples

The training cases of the reservoir were used to obtain the training data set shown in
Figure 6. The geometry of the reservoir model was 52 km in total length and was divided
into two parts: one was a channel linearly spreading from b to B in width and from h to H
in height; another was a cuboid of length L, width B and height H. The starting section of
the model reservoir was its inlet. The outlet was located at its end section, which was a
center circle hole without actual size. 18 simulation cases used as training samples were
designed and are listed in Table 1, with various combinations of b, B, L, H and inflow.

The simulation conditions and parameters of the 3DNM mentioned above were ap-
plied to the simulation of the designing cases to acquire the training data set. Before training
the ISM-RWTS, it was necessary to normalize the data set. The normalization formula was
defined as the following:

αk
i = 0.9

xk
i − xi,min

xi,max − xi,min
+ 0.05 (2)

where xi,max is the maximum value of the ith factor, and xi,min is the minimum value of
the ith factor; xk

i is the kth non-normalized sample value of the ith factor; and αk
i is the kth

normalized sample value of the ith factor.
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Figure 6. Schematic diagram of reservoir model.

Table 1. Design of training cases.

No. b (m) B (m) L (m) h (m) H (m) Inflow (m3/s) Reservoir Area (km2) Capacity (×109 m3)

1 300 800 0 30 120 120 28.60 2.3295
2 400 700 0 30 120 120 28.60 2.2143
3 500 600 0 30 120 120 28.60 2.0776
4 300 800 13,000 30 120 120 31.85 2.9951
5 400 700 13,000 30 120 120 30.55 2.7527
6 500 600 13,000 30 120 120 29.25 2.4942
7 300 800 26,000 30 120 120 35.10 3.6607
8 400 700 26,000 30 120 120 32.50 3.2912
9 500 600 26,000 30 120 120 29.90 2.9108

10 300 800 39,000 30 120 120 38.35 4.3264
11 400 700 39,000 30 120 120 34.45 3.8296
12 500 600 39,000 30 120 120 30.55 3.3274
13 300 800 26,000 30 100 120 35.10 3.0839
14 300 800 26,000 30 80 120 35.10 2.5074
15 300 800 26,000 30 100 100 35.10 3.0839
16 300 800 26,000 30 80 100 35.10 2.5074
17 300 800 26,000 30 100 80 35.10 3.0839
18 300 800 26,000 30 80 80 35.10 2.5074

3.3. Training of ISM-RWTS

In this study, Newton’s steepest descent optimization technique [31] was used to help
train the ISM-RWTS. The algorithm adjusts the weights (Wij and Vj1 in Figure 4) of each
connection in order to minimize the value of the error function by some small amount of
the networks [32]. The trained model learns from the data set and repeats this process
up to a sufficiently large number of training cycles. In this way, it usually converges to a
certain state when the network is trained with given times, and its learning error can reach
a given threshold.

The number of the BPNN’s hidden neurons depends on the degree of nonlinearity
and the dimensionality of the problem [33]. We varied the number of neurons in the hidden
layer from 1 to 20 for each model, and analyzed the computational accuracy of the BPNN
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under different hidden neurons. The computational accuracy was evaluated through the
root mean square error (RMSE), which was defined as follows:

RMSE =

√
1
n ∑n

i=1

(
Zi − Ẑi

)2 (3)

where n is the number of samples; Ẑi is the ith predictive value and Zi is the ith ex-
pected value.

The parameter of learning efficiency and training times were set as 0.3 and 10,000,
respectively. Take the ISM-RWTS for May as an example. Figure 7a shows the performances
of the different numbers of hidden neurons. It can be noticed that when the hidden neuron
was 3, the RMSE reached its minimum. After that, the intelligent model was verified, and
its fitness is shown in Figure 7b. The number of hidden neurons with the smallest RMSE in
each ISM-RWTS were confirmed as: 3 for May, 5 for June, 3 for July, 6 for August, and 5
for September.
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4. Evaluation of Model

The performance of a given model and the simulation of its accuracy are evaluated
using the following performance measures: maximum absolute error (MAR), mean absolute
deviation (MAD), RMSE (Equation (3)), and the coefficient of correlation (R), defined
as follows:

MAD =
1
m

n

∑
i=1

∣∣(Zi − Ẑi
)∣∣ (4)

RMSE% =
100
Zi

√
1
n

n

∑
i=1

(
Zi − Ẑi

)2 (5)

R =
∑n

i=1
(
Zi − Zi

)(
Ẑi − Ẑi

)
√

∑n
i=1
(
Zi − Zi

)2
∑n

i=1

(
Ẑi − Ẑi

)2
(6)

where Zi is the ith predicted value of water temperature; Ẑi is the ith observed or measured
value of water temperature; Zi is the average of Zi; Ẑi is the average of Ẑi; and n is the
number of the data considered.
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The mean absolute deviation, MAD, avoids the problem where the errors cancel each
other out, so it can accurately reflect the actual prediction error. The RMSE describes the
average difference between model results and observations in units of the observed value,
and it can be normalized (RMSE%) to provide a relative measure with respect to the mean
water temperature. The coefficient of correlation, R, provides information on the strength of
the linear relationship between the measured and the simulated value. It ranges from 0.0 to
1.0, with higher values indicating better agreement. The combined use of these parameters
provide a sufficient assessment of a given model’s performance.

5. Verification and Discussion
5.1. Verification on Tankeng Reservoir

The characteristic parameters of the Tankeng Reservoir are listed in Table 2. With
the ISM-RWTS, we gained the water temperature stratification at 1 km away from the
dam as soon as the parameters were inputted into the ISM-RWTS. The water temperature
simulated by the ISM-RWTS was the daily mean value, while the measured one was
instantaneous and easily fluctuated, because of the diurnal temperature variation in the
summer. Consequently, only the water depths below 10 m were considered.

Table 2. The characteristic parameters of Tankeng Reservoir.

Name DR (m) AR (km2) CR (×109 m3) WI (m3/s) WD (m)

Tankeng Reservoir 120 70.93 4.19 119 10~120

The comparison of the measured results and those simulated by the 3DNM and the
ISM-RWTS is summarized in Figure 8. According to the measured results, the water
temperature stratification in the reservoir began to appear in May. Then, the temperature
difference between the water surface and the bottom kept increasing and reached its
maximum in September. For the simulation under the water depth of 10 m, both the 3DNM
and the ISM-RWTS showed the process from almost no water temperature stratification to
great water temperature stratification in the Tankeng Reservoir, and presented the same
trend as the measured data. It can be noticed that the constant-temperature layer was below
the water depth of 50 m, with no more than 1 ◦C of change. The variable-temperature layer
was in the water depth range of 10 m to 50 m, in which the water temperature changed
by up to 11 ◦C. The maximum temperature difference was 11.0 ◦C for the measured value,
9.5 ◦C for the 3DNM value, and 10.8 ◦C for the ISM-RWTS value. When comparing the
results of the 3DNM and the ISM-RWTS with the measured results, the average errors were
0.74 ◦C and 0.72 ◦C, respectively.

The performance indicators of several models are provided in Table 3. All the R at
0.915 or greater indicated that these models were acceptable. The performance of the
ISM-RWTS over several months was not stable. Analyzing the results of the ISM-RWTS, it
performed best in August, with the highest R = 0.986 and the lowest RMSE% = 2.984%. In
July, the ISM-RWTS got relatively bad results. However, the ISM-RWTS in every month
(from May to September) clearly outperformed the 3DNM, because they had lower R
values. These results indicated that the ISM-RWTS was reliable for simulating the water
temperature stratification in the reservoir.

In general, both the 3DNM and the ISM-RWTS performed well in the Tankeng Reser-
voir simulation. However, the ISM-RWTS was much faster and easier than the 3DNM. In
this research, with the ISM-RWTS, we only spent about 6 h to get the results in a 4-core,
3.4 GHz computer, including 4 h for simulating designing cases to acquire the training data
set and 2 h for training the model, while it took us nearly 300 h to obtain the results of the
3DNM in the same computer, due to its large calculation area and complex meshes.
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Table 3. Performance indicators of the various models.

MODEL MAR MAD RMSE RMSE% R

3DNM 3.630 0.803 1.110 18.97 0.915
ISM-RWTS (May) 2.790 0.779 1.0212 8.46 0.981
ISM-RWTS (Jun) 1.810 0.790 0.896 7.219 0.964
ISM-RWTS (July) 1.650 0.618 0.710 5.179 0.983
ISM-RWTS (Aug) 0.620 0.378 0.401 2.984 0.986
ISM-RWTS (Sep) 2.710 1.018 1.263 9.132 0.975

ICM-RWTS 9.400 2.505 3.513 4.687 0.966

5.2. Discussion

When constructing the topology of the ISM-RWTS, water temperature was chosen as
the output so that the temperature at any water depth could be obtained. Sometimes, it
is important to evaluate the quantity of low-temperature water resources in the reservoir
for the sake of efficiently exploiting low-temperature water resources, so it is necessary to
obtain the depth corresponding to the low-temperature water. In this situation, we adjusted
the topology of the ISM-RWTS, i.e., the reservoir depth (DR), reservoir area (AR), reservoir
capacity (CR), water inflow (WI), and water temperature (WT) were selected as the inputs,
and water depth (WD) as the output. Through the same steps mentioned in Section 3, the
Intelligent Computation Model of Reservoir Water Temperature Stratification (ICM-RWTS)
was established.

The characteristic parameters of the Tankeng Reservoir in Table 2 were input into
the ICM-RWTS to calculate the water depths corresponding to 12 ◦C, 13 ◦C, 14 ◦C, 15 ◦C,
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16 ◦C, 17 ◦C, and 18 ◦C, from May to September. By converting the water depth to the
local elevation and smoothly connecting the value in each month, the isoline of the water
temperature at 1 km in front of the dam was acquired. The performance of the ICM-RWTS
compared with the measured results is shown in Figure 9. The water temperature at the
bottom remained at 12 ◦C all the time. The temperature of most of the water in the Tankeng
Reservoir was between 12 ◦C and 18 ◦C. Compared with the measured data, the elevation
values corresponding to 16 ◦C, 17 ◦C and 18 ◦C fit well with the measured results, while
the elevation values calculated by the ICM-RWTS corresponding to 13 ◦C, 14 ◦C and 15 ◦C
showed relatively big differences from the measured results, especially in September. This
was because this part of the water was close to the constant-temperature layer, and a tiny
difference in temperature caused huge variations in the elevation.

Int. J. Environ. Res. Public Health 2022, 19, x 12 of 14 
 

 

 

Figure 9. Comparison of water temperature isolines between the measured results and the com-

puted results from ICM-RWTS. 

The evaluation indicators of the ICM-RWTS are also shown in Table. 3. Its MAE was 

9.4 m at 14 °C in September, and the MAD = 2.88 m. In comparison with the 3DNM, it can 

be noticed that the ICM-RWTS had good performance, with RMSE% = 4.687% and R = 

0.966, which means that the ICM-RWTS could calculate the water temperature isoline 

well. 

6. Conclusions 

The water temperature in reservoirs is influenced by many factors. Considering the 

climate, the topography of the reservoir, and the inflow and outflow as the most important 

factors, the Intelligent Simulation Model of Reservoir Water Temperature Stratification 

(ISM-RWTS) was constructed. When compared with the 3D numerical model (3DNM), 

the ISM-RWTS clearly outperformed the 3DNM in the application of the Tankeng Reser-

voir, and generally had lower values of RMSE% and higher R values. The results showed 

that the ISM-RWTS is a feasible tool that can be used to estimate the water temperature 

stratification in the reservoir. The advantages of the ISM-RWTS were reflected in its sim-

plicity of use, its well generalized performance, its transient response, and its flexibility 

for considering different input and output parameters. 

The Intelligent Computation Model of Reservoir Water Temperature Stratification 

(ICM-RWTS) was also discussed, which was obtained by adjusting the input and output 

values of the ISM-RWTS. By analyzing the calculation results of the ICM-RWTS, it can be 

concluded that the ICM-RWTS successfully worked out the isoline of the water tempera-

ture over months in the reservoir, and had good accuracy (RMSE% = 4.687, R = 0.966). This 

fact  further confirms that this method is practical  and useful to predict the water tem-

perature in reservoirs. 

Figure 9. Comparison of water temperature isolines between the measured results and the computed
results from ICM-RWTS.

The evaluation indicators of the ICM-RWTS are also shown in Table 3. Its MAE was
9.4 m at 14 ◦C in September, and the MAD = 2.88 m. In comparison with the 3DNM, it can
be noticed that the ICM-RWTS had good performance, with RMSE% = 4.687% and R = 0.966,
which means that the ICM-RWTS could calculate the water temperature isoline well.

6. Conclusions

The water temperature in reservoirs is influenced by many factors. Considering the
climate, the topography of the reservoir, and the inflow and outflow as the most important
factors, the Intelligent Simulation Model of Reservoir Water Temperature Stratification
(ISM-RWTS) was constructed. When compared with the 3D numerical model (3DNM), the
ISM-RWTS clearly outperformed the 3DNM in the application of the Tankeng Reservoir,
and generally had lower values of RMSE% and higher R values. The results showed that the
ISM-RWTS is a feasible tool that can be used to estimate the water temperature stratification
in the reservoir. The advantages of the ISM-RWTS were reflected in its simplicity of use,
its well generalized performance, its transient response, and its flexibility for considering
different input and output parameters.
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The Intelligent Computation Model of Reservoir Water Temperature Stratification
(ICM-RWTS) was also discussed, which was obtained by adjusting the input and output
values of the ISM-RWTS. By analyzing the calculation results of the ICM-RWTS, it can be
concluded that the ICM-RWTS successfully worked out the isoline of the water temperature
over months in the reservoir, and had good accuracy (RMSE% = 4.687, R = 0.966). This fact
further confirms that this method is practical and useful to predict the water temperature
in reservoirs.
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